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Spontaneous Origin of Topological Complexity in the Cerebral Cortex

George  Chapline

Abstract

Attention is drawn to the possibility of regarding the cerebral cortex as a
physical system whose only excitations are topological. An attractive feature of such
a hypothesis is that it is possible to understand how local dynamics could
spontaneously give rise to a large scale organization of neurons and synapses that
one might associate with  sophisticated cognitive capabilities. It is suggested that the
spontaneous appearance of topological disorder in the topological phases of 2-D and
4-D quantum gravity illustrates how the topological complexity of the human brain
can develop. In particular the cooperative behavior of different neural circuits in the
cerebral cortex may be closely related to the topology of certain 4-manifolds.



1.  Introduction
Although the notion of intelligence has yet to acquire a precise definition, it is

reasonable to surmise that the ability of the human brain to process and retain
information in an intellectually sophisticated manner is intimately related to the
topological complexity of the synaptic connections in the cerebral cortex. Just how
the patterns of synaptic connections in the cerebral cortex are established is
somewhat mysterious, particularly in view of the fact that the human genome
doesn’t contain nearly enough genetic information to specify how all the neurons in
the cortex should be interconnected. It is also noteworthy that humans poses mental
capabilities such as reading that could not have evolved by natural selection. In this
report we wish to point out that the topological complexity of the connections in the
cerebral cortex could have arisen spontaneously, in much the same way that
topological disorder can arise in a two dimensional physical system from the
appearance of Kosterlitz-Thouless vortices.

One of the central questions of neural science has been to what extent the
human brain is like a computer. It has been argued [1] that the human brain is
fundamentally different from a computer because computer programs have no
intrinsic physical significance. However, one thing that computers and the human
brain clearly have in common is that specified inputs should lead to predictable
outputs. Therefore in some sense the human brain must incorporate the equivalent
of a computer program, and apparently this equivalent of a computer program must
have some physical interpretation. In the following we would like to draw attention
to the possibility that the requirement that specified inputs should yield unique
outputs can be taken to mean that only the boundary conditions for the system have
physical significance. In other words, the only observable quantities for the system
are purely topological [2]. The global behavior of such a system will be determined
not only by the boundary conditions but also by the topology of the space in which
the system lives. Thus the topology of an underlying manifold plays to some extent
the same role as the program in an ordinary computer.

A physical system with purely topological excitations can be described either
in terms of stochastic equations [3], or using an action which is a topological
invariant [4]. The dynamics of these systems is unusual in that the only stationary
states are ground states, and these ground states have a topological interpretation [3].
In the case of the human brain the physical system we wish to describe is the
network of neurons and synaptic connections, and the underlying “manifold” in
this case is a nonplanar graph whose edges correspond to synaptic connections. Over



the past decade there has been great interest in the idea [5] that the behavior of the
neurons and synaptic connections in the human brain can be understood by
studying the behavior of an equivalent electric circuit, whose connectivity is the
same as the nonplanar graph of synaptic connections. The behavior of this electric
circuit will obviously depend on the topology of the electrical connections.
However, in order to make explicit contact with the topological field theories which
have been recently used by mathematicians to study the topology of low
dimensional manifolds it might be more useful [2] to regard the system of neurons
and synaptic connections as a field theory defined on a 2-dimensional surface,
whose topological genus is the same as that of the nonplanar graph of synaptic
connections.

In this report we shall be concerned not so much with what particular physics
model might be most useful for describing the behavior of the system of neurons
and synaptic connections in the human brain, as how the nontrivial topology of the
synaptic connections might arise. We wish to put forward the idea that the
nontrivial topology of the synaptic connections arises spontaneously, with perhaps
only the level of topological complexity being predetermined. In the following
sections we will introduce three analytically solvable mathematical physics models
which illustrate how a nontrivial topology for the synaptic connections might arise.
The first two models pertain to how feature detectors within a single layer of the
cerebral cortex can self-organize to produce vortex structures similar to the
pinwheel-like singularities in the organization of orientation preference columns
that have been observed in the primary visual cortex of monkeys [6]. We will argue
that these pinwheel-like singularities are evidence that the orientation sensitive
neurons within a single layer of the visual cortex are interconnected in a
topologically nontrivial way. In section 4 a field theory model is introduced which
provides a topological description for a foliation of feature detecting networks. This
last model illustrates, at least in principle, how local dynamics can spontaneously
give rise to a cooperative assembly of neural circuits, each of which is specialized to
detect different features.

2.  Self-organization of Orientation Columns
Pattern formation by self-organization may be a common phenomenon in

brain development [7]. For example, numerical simulations based on Kohonen’s
self-organizing map algorithm  have successfully reproduced qualitative features of
the organization of orientation preference and ocular dominance columns within



each hypercolumn of the visual cortex of the macaque monkey [8]. A particularly
interesting result of these simulations is the occurrence of vortex-like singularities
in the arrangement of orientation columns. The authors of ref.8 interpreted the
occurrence of these vortex singularities in terms of singularities that occur in
dimension reducing maps. In the following we would like to offer an alternative
topological interpretation for these singularities, based on a simple neural network
model for self-organization of orientation preference columns.

Our basic network consists of F feature detectors such that each feature
detector is connected to three neighboring feature detectors. The assumption of
three connections per neuron is made for convenience since models where the
feature detectors are allowed to connect to larger numbers of neighbors lead to
similar results. Also in this report we will concentrate on the case where each
feature detector is characterized by an angle v. For example, the orientation sensitive
neurons within the primary visual cortex are characterized by a preferred
orientation which denotes the stimulus orientation which gives the strongest
response.

We wish to develop a theory for how feature detectors characterized by an
angle are organized within a single layer of the cerebral cortex. As our starting point
we consider maps that assign to each preferred orientation v a location r within our
network of F feature detectors. Following Kohonen [7] we will assume that brain
development can be modeled by assuming that the maps of interest are “self-
organizing”. That is initially each feature detector is assigned a random orientation
w(r, 0), and each orientation v in the environment is mapped to that feature
detector r whose orientation w(r,0) is closest to v. Thereafter the orientation of the
feature detector located at r evolves according to a rule of the form

        w(r,t + 1) = w(r,t) + h(r − s)[v − w(r,t)] , (1)

where h(x) is typically assumed to be a Gaussian function peaked at x=0. In our case
the function h(r-s) will be replaced by the rule that each feature detector is connected
only to its three nearest neighbors. The location s in (1) corresponds to the feature
detector whose orientation w(s) is closest to v. Thus the developmental process is
modeled as a Markov process whose states are the sets {w(r)} of possible orientations,
and where the transition probabilities are determined by probabilities of occurrence
in the environment of various orientations v. In order to construct an analytical



model of this developmental process it will be useful to introduce an energy
functional E[w] that satisfies

       < dwP(v) >= −gradwE, (2)

where P(v) is the probability distribution for the orientations of environmental
stimuli. Neglecting certain mathematical subtleties, the required energy functional
is [9]

         E[w] = 1

2 <r ,s>
Σ

vεR(r )
Σ P(v)|v − w(r,t)|2 (3)

where the sum over <r,s> runs over nearest neighbor connections and R(r)  is the
receptive field of the feature detector located at r; i.e. the union of all environmental
stimuli that are closer to w(r, t) than any other w(s,t), where s ≠  r.

Given an energy functional that satisfies (2) there are standard techniques that
one can use to investigate the stochastic evolution of the organization of our feature
detecting network. However in the following our only interest in how the self-
organization of our feature detectors evolves with time will be to note that under
the influence of the random variable v(t) which describes the effect of the
environment the system relaxes to an asymptotic state characterized by a stationary
probability distribution for various final configurations {w(r)}.  The statistical
properties of our network of feature detectors in this stationary state can be derived
from a "partition function", which is a sum over all possible stationary state
configurations weighted with the Boltzmann factor exp (-E[w]).  If we assume that
the stochastic evolution of our network is governed by an energy functional of the
form (3) then this partition function has the form:

        Z =
L
Σκ F Π

i= l

F

dw(ri )eo

2π

∫
−

K

2 < i , j .
Σ |w(ri )−w(r j )|2

(4)

where κ  and K are constants, the sum over L means a sum over triangular lattices,
and the indices i and j refer to orientation sensitive neurons located at the centers of
the triangles in this lattice (note that F is the number of faces of the lattice L). For
large numbers of faces F the triangular lattices L can be thought of as triangulations
of 2-dimensional surfaces, and in the limit F -> ∞ the sum over triangular lattices in



(4) becomes a sum over smooth 2-dimensional surfaces. In this limit the partition
function (4) becomes

Z = Dw(σ )exp(−S)∫ , (5)

where σ  is the coordinate of a point on the smooth surface and the continuum
action S is given by

S = K

2
d 2∫ σ∂α w∂α w + λ .  (6)

The constant λ in (6) replaces the constant κ  and plays the role of energy per
neuron. Partition functions using classical actions similar to (6) were originally
introduced as quantum theories of matter coupled to 2-D gravity [10]. In particular,
the quantum theory defined by (5) describes the coupling of 2-D quantum gravity to
a single scalar field, and has been intensively studied by mathematical physicists [11].
If one assumes that this scalar field represents a periodic variable, then it turns out
that there is a phase of the theory where the dynamics is essentially the dynamics of
2-D quantum gravity.

Another interpretation [11] of the partition function (5) is that it represents a
relativistic string moving on a 2-dimensional surface - in mathematical terms this
means holomorphic mappings from an arbitrary 2-dimensional manifold onto a
fixed 2-dimensional manifold. It is worth noting that this result is consistent with
the theorem [12] that for maps of 2-dimensional surfaces onto 2-dimensional
surfaces the stationary state of Kohonen’s algorithm is a holomorphic (or anti-
holomorphic) map. Thus we arrive at the general result that the coordinate w is a

function of z = x + iy . or z
−

= x − iy.   Of particular interest to us here are solutions
where w(z) has the form where the mi  are integers. In general one must have

w(z) =
i
ΣmiΙm ln(z − Zi ), (7)

∑ mi = 0.  In fact these solutions are just the vortex configurations of the 2-
dimensional XY model discovered by Kosterlitz and Thouless [13]. Substituting the
configuration (7) into the action (6), the path integral (5) assumes a form identical to



the partition function for a 2-dimensional Coulomb gas, with 1/π K playing the role
of temperature:

Zv =
mi ,Zi

Σ exp −πK
i≠ j
Σ




mimj ln
l

|Zi − Zj |



















(8)

As was first pointed out by Kosterlitz and Thouless [13] a 2-dimensional Coulomb
gas has a phase transition which implies that at low temperatures the vortex-
antivortex pairs in the system (8) are bound together, while at high temperatures
they are dissociated. Although the exact dependence of the string theory partition
function (5)  on temperature is not quite the same as for the XY model, it can be
shown [14] that the basic picture of a Kosterlitz-Thouless (KT) phase transition holds
in string theory. Applied to our network of orientation sensitive neurons the
existence of a KT phase transition means that if the constant K is less than a certain
critical value then vortex-like configurations should be a prominent feature of the
organization of orientation preference columns in the primary visual cortex of all
primates.

3.  2-D Quantum Gravity Model
As mentioned in the last section our theory of self-organized orientation

columns can also be interpreted as a theory of 2-dimensional quantum gravity
coupled to a scalar field representing orientation preference. Inspection of the action
(6) reveals that when the coupling constant K is very small one can neglect kinetic
variations in the scalar field. This suggests an alternative approach to understanding
the appearance of vortex configurations in the pattern of orientation columns. To
begin with we assume that the scalar field associated with orientation preference is
frozen into a final configuration and no longer need be treated as a fluctuating field.
On the other hand the "quantum gravity" degrees of freedom are still active. This
means that when F is large and the coupling K is less than the critical value Kc = 2/ π
our theory of self organized feature detectors effectively becomes a theory of random
surfaces, where points of the random surface are labeled with a fixed orientation
preferences. This interpretation of the “weak coupling” phase for our network of
feature detectors leads us to an alternative topological interpretation for the
occurrence of the vortex configurations.



For a fixed number F of feature detectors the activation of “quantum gravity”
degrees of freedom essentially means that the 2-dimensional surface approximated
by a triangular lattice that is dual to the network of feature detectors will change
with time. This does not mean that the local connections between feature detectors
will change, but the global way this network of feature detectors folds back on itself
will be allowed to vary (the network can be thought of as a discretization of a 2-
dimensional surface with varying topology). In fact when both F is large and the
constant κ  approaches a certain critical value, the topological genus can become
very large [15]. It is not hard to show that the projection of a 2-dimensional surface
with a large topological genus onto the smooth two dimensional surface that one
might naively associate with a single layer of the visual cortex will necessarily lead
to singularities that look like the KT vortices (7). In particular one can make use of
the Riemann- Hurwitz mapping theorem [16], which relates the topological indices
of a holomorphic mapping between two 2-dimensional manifolds to the topological
genus of each surface. The topological indices that appear are the ramification
indices ni which describe the behavior of the mapping near singular points and the
winding number n which describes the number of times the mapped surface is
covered by the mapping. In our case we are interested in mapping the surface
associated with our network of feature detectors to the disc-like region constituting a
single layer of a hypercolumn within the visual cortex. In the case where one is
mapping a surface of genus g to a disc the Riemann-Hurwitz relation reduces to the
simple formula

     (ni
i

∑ − 1) − n = 2g − 2 . (9)

where the sum runs over all singular points. If g is positive and large then it follows
that there must be some ni > 0. In addition, the sum ∑ ni must be large, so that if
there are only a few singular points per hypercolumn the ni themselves must be
large. Indeed it is reasonable to assume that the ni have magnitudes on the order of
the number of orientations that the human brain can distinguish; i.e. a few
thousand. Since near a singular point the mapping can be approximated as zni  [16],
these singular points begin to look a lot like the pinwheel-like patterns of
orientation preference columns observed in the visual cortex of monkeys [6].
Therefore we reach the conclusion that the unusual pattern of orientation
preference columns observed in the visual cortex of monkeys may be a signal that in



primates the orientation sensitive neurons within a single hypercolumn of the
visual cortex are connected together in a topologically nontrivial way, and
furthermore this topologically nontrivial pattern of connections can appear
spontaneously as a result of self-organization. A topologically nontrivial pattern of
synaptic connections is, in fact, characteristic of the recurrent networks that are
thought to play a significant role in human cognitive capabilities [17].

4.  4-D Quantum Gravity Model
Although the cerebral cortex is layered the neurons in different layers interact

with each other. More generally, one of the most characteristic features of mental
processes is that they involve cooperation of neural circuits at different locations
within the cerebral cortex. These different neural circuits typically are specialized for
recognition of different aspects of an object or sound. In this section we will show
how the theory of self-organization of orientation preference columns developed in
section 2 can be extended to describe a foliation of feature detecting networks, where
each network in the foliation contains slightly different feature detectors. We begin
by slightly altering the lattice version of the continuum theory of section 2.

In order to recognize the fact that the orientation preferences w[r] are periodic
variables one can replace the exponential link factors in the partition function (4)

with a Villain link factor 
m=−∞

∞

Σ exp[− K
2 (w + 2πm)2 ] , where the sum over m insures that

the link factor is periodic under w-> w + 2π.  Now the partition function (4) has the
form

Z =
L
Σκ F Π

i= l

F

dw(ri )
<ij >
Πo

2π

∫ e
mij

∑ −
K

2
[w(ri )−w(r j )+2πmij ]2

, (10)

where as before the sum over L runs over triangular lattices and the feature
detecting neurons are situated on the faces of this lattice. In this lattice model a
vortex is associated with a particular vertex of a triangular lattice and has a
topological charge

 M = mij
loop
∑ (11)

where the sum runs over the links of the neural network surrounding the
particular vertex of the triangular lattice. This discrete form of the string theory



partition function is instructive because it shows that the topological charges of the
KT vortices are formally identical with quantized magnet fluxes. Indeed if we were
to introduce real magnetic fields into the lattice theory (10) we would obtain an
antiferromagnetic version of the 2-dimensional XY model, that again contains
topological excitations [18]. Such a model has much in common with models of
spinglasses, which it may be recalled were one of the inspirations for Hopfield’s
neural network [5].

 One may now make use of a trick previously introduced by the author [19] for
generalizing a 2-dimensional antiferromagnetic XY-like model to 3-dimensions.
Namely, one replaces the effective magnet fields in (10) by a nonabelian magnetic
field with many “colors”. The previous holomorphic mapping condition now
becomes the condition

      (Dx − iDy )W = o  (12)

where Dα = −i∂α + [Aα ,  Aα  is the nonabelian gauge potential, and W is an multi-

component field that we wish to use to describe the feature preferences in a foliation
consisting of N layers of feature detectors. The choice of magnetic field strengths is
somewhat arbitrary; however, one elegant way to maintain the topological character
of the theory is to replace the string action (6) with the topological action [20]:

Stop = d 2∫ σTrε αβ{1
4 Fαβ W + ,W[ ] − DαW + DβW} (13)

where B = F12 and W are assumed to belong to the adjoint representation of the Lie
group SU(N). The classical equations of motion corresponding to the action (13) can
be solved exactly [21]. Moreover in the limit  N -> ∞ the solution to these equations
describes the geometry of a certain kind of 4-dimensional manifold [19]. Remarkably
the geometry and topology of this manifold can be expressed in terms of the
magnetic potential generated by magnetic monopole-like topological excitations [22].
Indeed in the limit N -> ∞  the effective magnetic field will be given by

     B(X) = gradXk
k

∑ l

| X − Xk |









(14)



where the sum runs over the positions of the monopoles and the third coordinate
specifies the layer of the foliation where the monopole is located. It can be shown
that the magnetic monopole-like objects in (14) endow the 4-dimensional manifold
with certain nontrivial topological characteristics [22], and the quantum theory
corresponding to the N -> ∞ limit of the action (13) can be interpreted as a model for
the topological phase of 4-dimensional quantum gravity [23].

 In the present context the magnetic field B is merely a formal device for
relating the feature detectors and synaptic connection strengths in different layers of
the foliation of feature detecting networks. According to this model the nature of
the feature detectors varies smoothly from layer to layer and is self-organized
according to (12) within each layer. The self-organization principle (12) is a kind of
twisted version of Kohonen self-organization. As in the 2-dimensional case
topological complexity appears spontaneously because under certain conditions the
monopole gas corresponding to (14) consists of dissociated monopole-
antimonopole pairs.  This implies that the feature detectors in our foliation of
feature detecting networks are interconnected in a topologically nontrivial and
subtle way. Furthermore it is interesting to note that because the topology of our
foliation of networks is nontrivial in a 4-dimensional sense, “time” must play an
essential role in establishing the cooperative behavior of this system. Actually the
4th dimension for the 4-manifolds of interest is not ordinary time ( see ref. 22), but
instead is a periodic variable that is used to tie together the boundary conditions for
the various layers in the foliation. The natural appearance of a periodic time
variable in a topological description of a foliation of networks of feature detecting
neurons is certainly intriguing in view of the suggestion [24] that visual awareness
and other aspects of consciousness are the result of the rhythmic and synchronized
firing of neurons in the different cortical areas concerned with the recognition of a
particular object. Indeed one is very tempted to identify the periodic time coordinate
of the 4-manifold associated with the effective magnetic field (14) with the 40-Hertz
rhythm in the brain that is widely believed to be involved with consciousness.

5.  Conclusion
One of the central mysteries of neural science is how the neurons and

synapses in the cerebral cortex become organized to perform sophisticated cognitive
functions. This mystery is deepened by the fact that the human genome fails by
many orders of magnitude to contain enough information to specify how the
immense number of neurons in the human brain should be interconnected.



Evidently some principle of self organization must be at work. Kohonen’s self-
organizing maps have a certain physiological plausibility, but the question of how
Kohonen’s maps lead to sophisticated mental capabilities has remained
unanswered. In this note we have pointed out that simple physical models that are
self organizing in a way closely related to Kohonen’s maps provide a natural
explanation for how self-organization can spontaneously lead to topological
structures that are very nontrivial. In particular, we have argued that a Kosterlitz-
Thouless transition in our models of self organizing feature detectors leads to
recurrent networks with a topologically nontrivial pattern of connections.
According to this view the detailed pattern of synaptic connections is not
predetermined. However it is possible that the general level of topological
complexity is genetically predetermined as a result of genetic specification of those
physiological characteristics that affect pertinent self-organization parameters such
as the biological equivalents of the parameters κ  and K that occur in our idealized
2D model (5) .

The idea that cognitive processes are associated with topological excitations of
the cerebral cortex is in accord with the well known fact that mental activities
typically involve a number of different regions of the cortex. In addition, we have
found that the cooperative behavior of different neural circuits in the brain may be
rooted in the spontaneous appearance of structures that are topologically nontrivial
in a 4-dimensional sense. The 4th dimension in this interpretation is an internal
periodic time variable that serves the purpose of tying together the boundary
conditions for the different neural circuits so that the different circuits are
representing the same object. Thus the topological structure of certain 4-manifolds
may provide a mathematical basis for understanding consciousness.
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